

Isfahan University of Technology

Ph.D. Defense

RuO₂/TiO₂ Photoelectrocatalyst in Hydrogen Evolution Reaction; Structure, Frontier Orbitals, and Electronic Spectra of Homonuclear and Heteronuclear Complexes of Ru(II) and Os(II) with Tetra(2-pyridyl)pyrazine Ligand

By: Mohammad Kaikhosravi	Date: Wednesday, 2024.02.21
Supervisors: Prof. H. Hadadzadeh	Time: 9:00 – 9:30 a.m.
Advisor: Prof. H. Farrokhpour	Place: Chemistry seminar hall

Abstract

The first part of this thesis is a joint experimental and theoretical study of RuO₂/TiO₂ heterostructures. In the experimental section, RuO₂/TiO₂ heterostructures were prepared by impregnation of mesoporous TiO₂ nanoparticles which were synthesized from a new precursor. The photoelectocatalytic application of as-prepared heterostructures was then investigated toward hydrogen evolution reaction (HER). The loading of RuO₂ on TiO₂ decreases the band gap energy and extends the absorption edge to the visible light region. To obtain a deeper understanding of the increase of the photoelectrocatalytic activity of RuO₂/TiO₂ heterostructures compared to the pure TiO₂, the theoretical calculations at the density functional theory (DFT) were performed on some model clusters of the pure TiO₂ and RuO₂/TiO₂ heterostructure. The theoretical results elucidated that the recombination ratio of electron-hole pair decreases effectively for RuO₂/TiO₂ compared to the pure TiO₂.

In the second part, to investigate the impact of metal center type and its arrangement on the electronic transitions of one-dimensional multimetallic complexes, this study employed a combined experimental and computational study of homo- and hetero-metallic complexes of Ru(II) and Os(II) with TPPZ. In the experimental section, four mono- and bimetallic complexes were synthesized and characterized according to the literature. On the computational side, the density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed to investigate geometry, electronic structure, and optical absorption spectra of mono-, bi-, and trimetallic complexes. Finally, this study presents a comprehensive description of the effect of the type and arrangement of the metal centers in one-dimensional conjugated complexes which have potentially interesting molecular wire properties.

Keywords: Heterostructures, Titanium dioxide, Ruthenium dioxide, Photoelectrocatalyst, Hydrogen evolution reaction, Density functional theory.